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Sialyl Lex 1 the oligosaccharide binding ligand to ELAM-I is synthesized from building blocks 2-5 via a short route 
featuring the principle of a neighbouring PhS group as an auxiliary to facilitate and stereochemically control the 
formation of the desired glycoside bond in the target molecule. 

Endothelial leukocyte adhesion molecule- 1 (ELAM-1), found 
on blood vessel walls, serves an important role in the 
recruitment of leukocytes to inflammation sites.1 Recent 
disclosures24 identified sialyl Lex 1 (Scheme 2), a terminal 
oligosaccharide fragment of membrane glycoproteins and 
glycolipids, as the ligand recognized by ELAM-1. These 
reports dramatically added weight to the notion that carbo- 
hydrates play important roles in cellular recognition and 
physiological functions.5 Furthermore, this carbohydrate frag- 

ment is highly expressed on the surface of tumour and 
embryonic cells.6 The demonstration of sialyl Lex 1 as the 
guiding moiety of leukocytes to sites of injury and its 
identification as a tumour cell marker coupled with difficulties 
associated with its isolation from natural sources, prompted us 
to  undertake its chemical synthesis. Reported herein is a 
stereocontrolled and biologically efficient synthesis of the 
parent sialyl-Lex 1.7 

Previous reports from these laboratories demonstrated the 
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Scheme 1 Stereocontrolled construction of 2-deoxy glycosides 

utilization of the PhS group as an auxiliary to facilitate and 
stereochemically control the formation of a- and (3-2- 
deoxyglycosides8 (see Scheme 1) such as those present in 
gangliosides and other sialyl derivatives.9 Scheme 2 outlines a 
retrosynthetic analysis of sialyl Lex 1 based on this principle, 
and which defines compounds 2-5 as the key intermediates 
required for its synthesis. The order of bond formation in the 
synthetic direction was chosen to be a-+b+c for optimum 
efficiency and protecting group manipulation. 

The requisite fragments 2,T 3,$4,§ and 510 were synthesized 
from sialic acid ,11 D-galactose, N-acetyl-D-glucosamine , and 
L-fucose, respectively. Noteworthy is the new, four step 
procedure, for the synthesis of sialic acid derivative 2 from 
sialic acid methyl ester. 

Scheme 3 summarizes the construction of sialyl LeX 1 
starting with the coupling of intermediates 3 and 4. Thus, 
reaction of glycosyl fluoride 3 with glucosamine derivative 4 
under the influence of AgC104-SnC1212J3 resulted in the 
stereospecific formation of fi-glycoside 6 in 63% yield. 
Selective removal of the allyl protecting group from 6 with 
R u H ~ ( P P ~ ~ ) ~ - H +  led to disaccharide 7 (85%) which reacted 
with glycosyl fluoride 5 under the above mentioned conditions 
affording trisaccharide 8 as the only detectable product and in 
85% yield. Deacetylation of 8 under basic conditions gave triol 
9 (95% yield) which reacted with the sialic acid derivative 2 in 
the presence of Hg(CN)2-HgBr2 in a remarkably regio- and 
stereo-specific manner, furnishing tetrasaccharide 10 in 63% 
yield (based on consumed triol 9).14315 Exposure of 10 to 
Ph3SnH-A1BN in toluene at 130°C led to reductive desul- 

+ This compound was prepared from the methyl ester of sialic acid in 
ca. 32% overall yield by the following sequence: (i) excess Ac20, 
HzS04 cat., 25"C, 20 h; (ii) 4 equiv. 1 mol dm-3 NaOH, H 2 0 ,  25 "C, 2 
h; (iii) 9 equiv. NaOH, 9 equiv. PhCH2Br, Bun4NI cat., dimethylform- 
amide (DMF), 60 "C, 3 h, quench with MeOH at 25 "C and acidify to pH 
2 with 1 mol dm-3 aq HC1; ( iv )  2.5 equiv. PhSCl, CHzCl2, 25"C, 
16 h. [See ref. 14(a)]. 

$ This compound was prepared from the phenylthio @-galactose in ca. 
37% overall yield by the following sequence: (i) 3 equiv. 
PhCH(OMe)2, camphosulphonic acid cat., tetrahydrofuran (THF), 
50°C, 15 h;  (ii) 2 equiv. AczO, 1.4 equiv. Et3N, 4-dimethylaminopyri- 
dine (DMAP) cat., CHZClz, 0+25"C, 1 h; (iii) 10 equiv. NaCNBH3, 
ethereal HCI, 3 8, molecular sieves (MS), THF, 8 h, 25°C; (iv) 2 
equiv. Ac20, 1.4 equiv. Et3N, DMAP cat., CH2CI2, 0+25OC, 1 h; 
( v )  excess HF-pyridine, 1.5 equiv. N-bromosuccinimide (NBS), 

5 This compound was prepared from the N-acetylglucosamine in ca. 
34% overall yield by the following sequence: (i) HC1 satd. PhCH20H, 
1OO"C, 1 h; (ii) 3 equiv. PhCH(OMe)*, camphorsulphonic acid cat., 
THF, 5O"C, 1 h; (iii) 1.5 equiv. NaH, 2 equiv. allyl bromide, Bun4NI 
cat., DMF. 0 to25 "C, 3 h; (iv) 15 equiv. NaCNBH3, ethereal HC1,3 8, 

CH2CI2, -78 to 25"C, 5 h. 

MS, CH2C12,0.5 h, 25°C. 
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Scheme 2 Retrosynthetic analysis of sialyl Lex 1. Order of bond 
formation: a+b+c (see structure 1). 

phurization and formation of &-lactone 117 as the major 
product together with its 4'-regioisomer (11') (77% total 
yield, ca, 3.5: 1 by 1H NMR).II Alkaline hydrolysis of the 
mixture 11 + 11' (LiOH, aqueous dioxane) led, in essentially 
quantitative yield, to hydroxy acid 12. Finally, catalytic 

T[ Selected physical properties for 11: Rf = 0.19 (silica, 30% ethyl 
acetate in benzene); +0.22" (c 0.65, CHCI,); IR (CHC13) 
vmaX/cm-l 3423m, 3344br, 3009s, 2930s, 1758s, 1718s, 1683s, 1455s 

aromatic), 5.61 (d, J 3 . 4 H z ,  1 H ,  H-1 fuc),5.35 (dd ,J7 .8 ,  10.5 Hz, 

4.96-4.84 (m, 5 H ,  H- l ' ,  CHzPh), 4.78-4.66 (m, 2 H,  CHO, CH2Ph), 
4.56-4.27 (m, 13 H ,  H-2 fuc, CHO, CHN, CHzPh), 4.24-3.81 (m, 

lH,H-4'),3.62(d,J10.7Hz, lH,NH),3.52(t,J6.7and6.6Hz,lH, 
H-5'),3.43 (d, J 1.0 Hz, 1 H ,  CHO), 3.05 (dd, J 10.5 and 2.7 Hz, 1 H,  
H-3'), 2.73 (dd, J 13.4 and 5.1 Hz, 1 H ,  H3"eq), 1.93 (dd, J 13.4 and 
11.3 Hz, 1 H,  H-Yax), 1.49 (d, J 6.4 Hz, 3 H ,  H-6 fuc), 1.42 (s, 3 H, 
NAc) and 1.41 (s, 3 H ,  NAc); 13C NMR (125 MHz, ChD6) 6 170.6, 
169.4, 165.5, 139.5, 139.4, 139.3, 139.1, 138.9, 138.8, 138.5, 138.1, 
137.6, 136.4, 130.6, 130.4, 129.2, 129.1, 128.9, 128.8, 128.65, 128.61, 
128.55,128.51,128.48,128.3, 128.2,127.8, 127.3,117.7, 107.6,101. 1, 
99.3, 98.0, 97.3, 96.7, 79.5, 79.4, 78.9, 78.1, 76.7, 76.5, 75.7, 75.6, 
74.8, 74.7, 74.6, 74.3, 74.0, 73.9, 73.2, 72.9, 72.4, 72.0, 71.4, 69.8, 
68.4, 66.9, 66.6, 61.2, 59.5, 59.2, 55.4, 54.1, 49.9, 43.2, 33.9, 30.1, 
27.0, 23.2, 20.5, 19.5 and 16.8; HRMS (FAB) Calcd. for 
ClolH 110022N2Cs (M+ Cs) : 1835.6605, found: 1835.6691. 

For 1: (mixture of C-1 anomers, ca. 3 : 2, a :  6): Rf = 0.32 (silica, 
butan-1-01 : ethanol :water, 2 : 1 : 1); [a]2SD +5.8" ( c  0.24, MeOH); IR 
(KBr disc) v,,,lcm-l 3400vb, 2955s, 1561s, 1413s, 124% 1145m, 
1040m, 841s; lHNMR(500MH2, DzO) S5.10(2d,J3.5Hzeach, H-1 
fuc and H-1 a-anomer), 4.73 (d, J 8.0 Hz, H-1 p-anomer), 4.54 (dd, 
J 4.5 and 8.0 Hz, 1 H, CHO), 4.1 (dd, J 3.5 and 9.44 Hz, 1 H,  C HO), 
4.09 (dt, J 9.9 and 3.2 Hz, 1 H ,  CHO), 4.02-3.54 (m, 21 H ,  remaining 
CHO, CHN) , 2.77 (dd, J 4.3 and 12.3 Hz, 1 H,  H-3" eq), 2.04 (s, 6 H,  
acetates), 1.80 (dd, J 12.3 and 12.3 Hz, 1 H, H-3"ax) and 1.18 (d , J6 .1  
Hz, 3 H ,  H-6 fuc); HRMS (FAB) Calcd. for C31H52023N2C~ (M+Cs): 
953.2015, found: 953.2079. 

1 1  In addition to products 11 and 11', a mixture of &lactones (23%) 
containing the PhS group was also obtained and was converted to 11 
and 11' under the same Ph3SnH-AIBN desulphurization conditions. 

and 1094s; 'H NMR (500 MHz, C6D6) 6 7.69-6.93 (m, 50 H, 

1 H ,  H-2'), 5.28 ( d , J  10.5 Hz, 1 H, NH), 5.06 (d, J3 .1  Hz, 1 H ,  H-1), 

20 H ,  H-2, 2 H-6', H-4", H-5 fuc, CHO, CHZPh), 3.75 (d, J 1.9 Hz, 
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Scheme 3 Synthesis of sialyl Lex 1. Reagents and conditions: (i) 2.5 
equiv. AgC104, 2.5 equiv. SnC12, 1.5 equiv. of 4, 4 8, MS, CH2C12, 
0"C, 4 h, 63%; (ii) H2R~(PPh3)4 cat., EtOH, 95"C, 1 h; then TsOH 
cat., MeOH, 25"C, 2 h, 85%; (iii) 3 equiv. AgC104, 3 equiv. SnC12, 
1.6 equiv. of 5 ,  4 8, MS, E t20 ,  25"C, 3 h, 85%; (iv) NaOMe cat., 
MeOH, 0"C, 2 h, 95%; (v) 3 equiv. Hg(CN)2, 1 equiv. HgBr2, 1.7 
equiv. of 9 , 4  8, MS, CC14, 40°C, 48 h,  63% based on consumed 9; (vi) 
5 equiv. Ph3SnH, AIBN cat., toluene, 130°C, 4 h, 77% plus 23% of 
&lactones containing a PhS group; (vii) LiOH, H 2 0 ,  dioxane, 25"C, 
24 h,  100%; (viii) Hz, Pd(OH)* cat., MeOH, 25"C, 48 h, 95%. 

hydrogenolysis of the benzyl groups from 12 gave the desired 
product, sialyl Lex 111 which was purified by filtration through 
Sephadex (95% yield). The alternative finishing sequence 
involving hydrogenolysis of the benzyl groups from 11, 
followed by hydrolysis of the lactone leading to 1, was also 
successful (90% overall yield). 

The described sequence renders sialyl Lex 1, the oligosac- 
charide binding ligand of ELAM-1, readily available in pure 
form for extensive biological investigations. Further chemical 
studies utilizing the present strategy, or modifications of it, 
may provide powerful biological tools and potential thera- 
peutic agents in the area of inflammation and related 
disorders. 17 
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